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Abstract—Vehicular fog computing (VFC) is a promising
approach to provide ultra-low-latency service to vehicles and end
users by extending the fog computing to conventional vehicular
networks. Parked vehicle assistance (PVA), as a critical technique
in VFC, can be integrated with smart parking in order to
exploit its full potentials. In this paper, we propose a smart VFC
system by combining both PVA and smart parking. A VFC-
aware parking reservation auction is proposed to guide the on-
the-move vehicles to the available parking places with less effort
and meanwhile exploit the fog capability of parked vehicles to
assist the delay-sensitive computing services by monetary rewards
to compensate for their service cost. The proposed allocation
rule maximizes the aggregate utility of the smart vehicles and
the proposed payment rule guarantees incentive compatibility,
individual rationality, and budget balance. We further provide an
observation stage with dynamic offload pricing update to improve
the offload efficiency and the profit of fog system. The simulation
results confirmed the win-win performance enhancement to the
fog node controller (FNC), the smart vehicles and the parking
places from the proposed design.

Index Terms—Vehicular fog computing (VFC), parked vehicle
assistance (PVA), multi-round auction

I. INTRODUCTION

With the rapid growth of connected devices in Internet of
Things (IoT)-based network systems and new applications and
services for 5G, such as virtual reality (VR), augmented reality
(AR) and real-time online gaming, fog computing plays an
important role to provide low latency service by migrating
the urgent computation workload from cloud data centers to
computing service at network edges of the 5G network [1,
2]. Nevertheless, the deployment of computing services and
resources at network edges is a serious challenge to the service
provider in fog computing [3, 4].

Vehicular fog computing (VFC) is a promising approach
to provide such a low latency service by extending the
fog computing to conventional vehicular networks [5]. To
cope with the explosive application demands, roadside units
(RSUs), which are generally deployed in different areas of a
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city, can be upgraded by equipped with fog computing servers
to provide both communication and computation services to
those mobile terminals. However, the fog computing service
is limited due to the density of RSUs. Moreover, RSUs
confront heavy load with the increasing number of service
requests. The idea of parked vehicle assistance (PVA) has
been investigated to be useful to deliver content in vehicular
ad hoc networks (VANETs) where the number of RSUs is
insufficient [6–10]. Note that the parked vehicles can act
as static network infrastructures to improve connectivity by
sharing and exchanging contents with moving vehicles.

On the other hand, due to the increased population and
limited spatial resource of the city, limited parking places
cause severe parking issues. The previous study shows that
a large portion of traffic intensity in a major city is due to
the congestion caused by the vehicles searching for parking
slots [11]. Besides, unnecessary time and energy of vehicles
are wasted during their searching for parking. To guide the
vehicles to the available parking slots with less effort, time and
fuel consumption, smart parking system (SPS) has been widely
investigated [12–15]. Nevertheless, most proposed designs are
limited to solely satisfy the parking demands. The potential
benefits of smart parking in other domains, such as VFC, is
not explored yet.

We find that by integrating PVA and smart parking, we
potentially provide a more robust VFC system with lower
cost and higher satisfactory to all participants. The VFC-aware
smart parking improves the traffic and parking efficiency by
leading on-the-move vehicles to the available parking places.
Meanwhile, the fog service provider can achieve cost saving by
turning off redundant fog computing servers, namely fog nodes
(FNs), when the vehicles with fog capability could be attracted
to park at proper parking spaces to assist the delay-sensitive
computing services. The system is aware of the fact that each
vehicle aims to maximize their own utility by considering
driving cost, walking cost and parking payment, etc. To
compensate for their service cost, the fog service provider
motivates the parked vehicles by paying a certain amount
of monetary rewards. Moreover, the fog service provider in
the long term can save a part of deployment expense and
maintenance cost with the aid of parked vehicles.

In this paper, we propose a practical VFC system by
combining both PVA and smart parking. The proposed system
provides a VFC-aware parking reservation auction to guide
the on-the-move vehicles to the available parking places with
less effort. We first analyze the bidding strategies of the
smart vehicles and the feasible region of the offload price
in a single-round scenario and further propose a multi-round
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auction to improve the offload price through the iterative
update process. The proposed auction guarantees incentive
compatibility, individual rationality, and budget balance. The
simulation results show that the proposed design can improve
the system performance compared with conventional and
greedy approaches, especially under huge parking demand.
The results also show that the proposed system with multi-
round auction can achieve win-win performance enhancement
to the FNC, the smart vehicles, and the parking places.

A. Related Work

To provide low-latency service to vehicles and end users,
VFC has been widely studied [16–18]. A VFC-based architec-
ture [16] is proposed to enhance the quality of user experience
in latency-sensitive applications by using software-defined
networking (SDN) technology to the conventional vehicular
networks. In order to decrease task offloading complexity in
VFC-enable VANETs, where the network topology dynami-
cally changes caused by the mobility of vehicles, an efficient
predictive framework [17] is provided to adaptively upload the
tasks to the fog computing servers through direct uploading
or predictive relay transmissions. The limited battery capacity
of in-vehicle user equipments (UEs) in VFC framework is
considered in [18], where an energy-efficient resource alloca-
tion algorithm [18] is developed to solve the joint workload
offloading and power control problem by applying queuing
theory to derive the stochastic traffic models at UEs and FNs.

The potential of PVA is investigated in the literature.
The results in [6] show that even a small proportion of
PVA vehicles can greatly promote the network connectivity.
Theoretic analysis, realistic survey, and simulation of PVA
are investigated in [7]. The fairness in exploiting the energy
resources of parked vehicles is considered in [8] to extend the
RSU service coverage, which is constrained to not excessively
drain parked vehicle batteries. D2D-based content delivery is
proposed in [9], where parked vehicles around the street form
vehicular social communities with the moving vehicles passing
along the road through D2D communications. A Stackelberg
game has been developed to obtain the equilibrium of the
competition and cooperation among RSUs, moving vehicles
and parked vehicles during the content delivery [10].

In research field as well as from economic interests, a lot
of smart parking solutions have been proposed to efficiently
guide the drivers to satisfying parking slots [12–15]. A full
survey [15] of the SPS state-of-the-art over the period of
2000–2016 has been provided and thoughtfully classified,
including parking information collection, system deployment,
and service dissemination. By considering driver’s cost func-
tion, an optimal parking reservation allocation using mixed-
integer linear programming (MILP) is proposed to assign and
reserve parking spaces to drivers with specific requirements
[12]. An effective cloud-based smart parking architecture is
provided based on IoT technology, which automatically mon-
itors and manage parking space [14]. The system prototype
is successfully implemented by a Zigbee wireless sensor
network (WSN) and a data center serving as a cloud. In the
literature with game-theoretic approaches, a dynamic resource
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Fig. 1. Local network scenario

allocation, reservation, and pricing smart parking system is
proposed to minimize the overall system cost [19]. However,
the uncoordinated selfish behavior of drivers is not addressed
and will potentially degrade the system efficiency. A demand-
based parking pricing mechanism is proposed by predicting
the occupancy rate of individual parking areas using machine
learning approach [20], where an amount of historical parking
data are required. With the development of electric vehicle
(EV) accompanied by the rapid growth of the EV charging
infrastructure, a noncooperative game-theoretic approach using
Rosen-Nash normalized equilibrium [21] is provided to deal
with the parking-lot EV charging scheduling problem. For
commercial use, SFpark [22] and LA ExpressPark [23] are two
intelligent parking program by utilizing smart parking meters.
The demand-responsive parking pricing is piloted by both
SFpark and LA ExpressPark to realize the goal of increasing
the availability of public parking spaces and decreasing traffic
congestion and pollution.

To best of our knowledge, the idea of combining both PVA
and smart parking is not explored in the literature yet.

B. Contributions and Organization

Our main contributions are as follows.
• We propose a parked vehicle assisted VFC system, which

integrates both PVA and smart parking. On the one hand,
the proposed system offers an opportunity to lead moving
vehicles to the available parking places with less effort.
On the other hand, the proposed system exploits the fog
capability of parked vehicles to assist the delay-sensitive
computing services and meanwhile achieve the energy sav-
ing of the FNC by turning off redundant FNs. To best of our
knowledge, we are the first team to propose this idea and
provide a comprehensive design to address the efficiency
and selfishness issues in this approach.

• A multi-round multi-item parking reservation auction is
proposed to attract the on-the-move vehicles carried with
CPU resources by monetary rewards for service offloading.
Since the optimal choice of the offload price is challenging
to get a close form given the auction structure, we provide
multi-round offload pricing update to transfer the CPU
resources of the parked vehicles to improve the system
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performance. The proposed auction is incentive compatible,
individual rational and budget balance.

• We evaluate the performance of the proposed VFC system
through simulations in realistic settings by considering the
street map and parking space deployment in the real world.
The simulation results show that an optimal offload price
exists and the proposed multi-round auction can improve
both the profit of the FNC and the utility of parked vehicles.
The rest of paper is organized as follows. In Section

II, we introduce the proposed parked vehicle assisted VFC
system. A single-round multi-item parking reservation auction
is presented in Section III. Furthermore, we provide a multi-
round multi-item parking reservation auction with offload
pricing update to increase the profit of the FNC in Section IV.
Section V shows our simulation results and, finally, Section
VI concludes this work.

II. PROBLEM FORMULATION

The proposed parked vehicle assisted VFC system is
shown in Fig. 1. In the system, we assume a set of H =
{h1, h2, · · · , hK} to represent K hotspots. Each hotspot
consists of multiple end-user devices carrying with delay-
sensitive computation requests for external computing service.
To guarantee the service requirements, sufficient FNs have
been deploy near each hotspot to serve those end users. A
FNC is responsible to manage those FNs. Besides, there are
N on-the-move vehicles (moving on the road with certain trip
destinations), denoted by a set B = {b1, b2, · · · , bN}. Some
of them, called fog-capable vehicles, equipped with limited
computing resources and have the potential to offload the com-
putation workload from the FNs near the hotspots when they
are also parked nearby. There are M parking places owned by
private parking operators, denoted by S = {s1, s2, · · · , sM},
which provide parking service to those vehicles searching
for parking slots. The real-time parking availability can be
collected by parking sensors. The key notations of this paper
are listed in TABLE I. We consider a time-slotted system and
formulate as follows:

1) Parking places: We introduce xi,j(t) to indicate the
arrival event for parking:

xi,j(t) =

{
1 if bi parks at sj at time t,
0 otherwise. (1)

The departure event is denoted by yi,j(t) as

yi,j(t) =

{
1 if bi parked at sj leaves at time t,
0 otherwise. (2)

The reservation state is denoted by li,j(t) as

li,j(t) =

 1 if sj has reserved a parking lot
for bi at time t,

0 otherwise.
(3)

For parking place sj ∈ S , the geo-location is known as
X s
j ∈ R2 (GPS coordinates). We denote Cj as the overall

parking capacity of sj . Then, the parking slot inventory 1 at

1The parking slot inventory can be regarded as fixed within the proposed
auctions by the following two solutions: i) reserve a part of available parking
spaces for the proposed auctions; ii) use the advance reservation period to
control the auction frequency so that the processing time of the auction
becomes negligible (more flexible).

TABLE I
LIST OF KEY NOTATION

Notation Definition
H Hotspots, H = {h1, h2, · · · , hK}
B On-the-move vehicles, B = {b1, b2, · · · , bN}
S Parking places, S = {s1, s2, · · · , sM}

xi,j(t), yi,j(t) Indicators of {arrival event, departure event}
li,j(t) Indicators of reservation state
X s

j Geo-location of sj
Cj Overall parking capacity of sj
Cj(t) Parking slot inventory of sj at time t
wi,j Indicator of bi if allocated to sj

X cur
i , X dest

i {Current position, traveling destination} of bi
rdi Average driving speed of bi
rw General walking speed of human

Φr(·) Distance function by city roads
Φl(·) Air line distance function

τdi,j , τwi,j
Remaining {driving time, walking time}

of bi if parks at sj
τi,j Total traveling time, τi,j = τdi,j + τwi,j
cdi,j Driving energy cost, cdi,j = θτdi,j
ci,j Total cost of both driving and walking
µ Service rate in CPU cycle per bit
mi # of CPUs equipped at bi
∆i Parking duration of bi
X h

k Central geo-location of hk

λk Mean workload arrival rate of hk

λ̂k Offloaded arrival rate per CPU of hk

mk Total # of CPUs required by hk

zi,k Indicator of bi if offloads from hk

qki,j , hk
i,j , dki,j

{Queuing delay, network delay, service delay}
of bi if offloads from hk at sj

cki,j Energy cost of computing service
Dk Maximum delay toleration of hk

C(·) Energy cost of nearby FNs of hotspot hk

tr Advance reservation period
τ ri,j Parking reservation duration
psj Reserve price per unit time if parks at sj

aj,k
Offload price per CPU resource if offloads

from hk at sj
vi Value of successful parking of bi

vi,j , ui,j {True valuation, utility} of bi if parks at sj
Tw
i Maximum tolerant walking time of bi
Ti Maximum tolerant traveling time of bi
Bb The set of smart vehicles
Si Candidate parking places of bi
Bj , Hj Candidate {vehicles, hotspots } of sj
Sk Candidate parking places of hk

Mh Maximum CPUs allowed to be supported
by a parked vehicle

∆cost
k , πk {Cost saving, profit} of hk

π Instantaneous profit of the FNC
pbi Real payment of bi in the auction

m̃i
Maximum # of CPUs can be provided

by bi recorded by the FNC
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time t can be calculated by

Cj(t) = Cj−
∑
bi∈B

t−1∑
t′=1

xi,j(t
′)

+
∑
bi∈B

t∑
t′=1

yi,j(t
′)−

∑
bi∈B

li,j(t). (4)

2) Vehicles: We introduce a binary indicator wi,j to denote
the parking location of vehicle:

wi,j =

{
1 if bi is allocated to sj ,
0 otherwise. (5)

Therefore, those vehicles (bi ∈ B) with the condition∑
sj∈S

wi,j = 0 are on-the-move vehicles.

For on-the-move vehicle bi ∈ B searching for a parking
slot, the current car position and the traveling destination
are known as X cur

i and X dest
i , respectively. Vehicle bi can

measure its average driving speed rdi through the historical
information. In this paper, we assume that the average walking
speed of human is rw in general. Besides, we define Φr(·)
as the distance function by city roads (similar to Manhattan
distance). If vehicle bi determines to park at place sj , the
remaining driving time and the walking time will be

τdi,j = Φr(X cur
i ,X s

j )/rdi and τwi,j = Φr(X s
j ,X dest

i )/rw. (6)

Therefore, the total traveling time will be τi,j = τdi,j + τwi,j .
We define the driving energy cost as cdi,j = θτdi,j , where θ is
the per unit driving energy cost. The total cost of both driving
and walking can be estimated by

ci,j = cdi,j + δτi,j , (7)

where δ is a positive constant converting traveling time to cost.
Furthermore, we define CPU as the unit of a computing

resource, which has the service rate µ (in CPU cycle per bit).
A vehicle bi can provide computing service if mi 6= 0, where
mi is the number of CPUs equipped at bi and reflects its fog
capability. A vehicle bi with mi 6= 0 is a fog-capable vehicle.
The parking duration of bi is denoted by ∆i. We assume that
a parked vehicle will only serve at most one hotspot during
its parking duration.

3) Hotspots: For hotspot hk ∈ H, the central geo-location
is known as X h

k . We assume that the FNC is capable to predict
the amount of computing service requests from end users at
hk for a short period in the future, which is represented by
mean workload arrival rate λk. We allocate the workload to
each CPU evenly. That is, we have

λ̂k =
λk
mk

, (8)

where λ̂k is the offloading arrival rate per CPU and mk is the
total number of CPUs required by hotspot hk by considering
its loading and delay requirements.

We introduce a binary indicator as follows:

zi,k =

{
1 if bi provides service to hk,
0 otherwise. (9)

If vehicle bi provides computing service to hk (zi,k = 1) at
sj (wi,j = 1), the quality-of-service (QoS) can be measured

in terms of service delay [24]:

dki,j = qki,j + hki,j , (10)

which consists of the queuing delay qki,j (CPU load) and the
network delay hki,j (data deliver). Consider parallel M/G/1
processor sharing queues [25, 26], the queuing delay is

qki,j =
λ̂kmi,j

µ− λ̂kmi,j

mi,j

=
λ̂kmi,j

µ− λ̂k
, (11)

where mi,j is the number of CPUs provided by bi at sj . Note
that the queuing delay in (11) increases when more CPUs are
provided by a smart vehicle, which has been confirmed in the
literature [27]. According to [24], the network delay is defined
as

hki,j = hj,k = ξΦl(X s
j ,X h

k ), (12)

where hj,k is the network delay between the parking place
sj and the hotspot hk, ξ is a scalar and Φl(·) is the air
line distance function. The energy cost for bi to provide such
computing service for hotspot hk is then given by [28]

cki,j = α
λ̂km

2
i,j

µ
+ βΦl(X h

k ,X s
j ). (13)

Furthermore, we define Dk as the maximum delay toleration
of hk. That is to say, the parked vehicle bi can serve hotspot
hk at sj only when dki,j ≤ Dk.

We assume that the FNC manages a sufficient number of
nearby FNs to meet the service requirements. We define an
energy cost function C(mf

k) [28] as

C(mf
k) = αf

λ̂k(mf
k)2

µ
, (14)

where mf
k is the number of CPUs required to be turned on at

nearby FNs of hotspot hk:

mf
k = mk −

∑
bi∈B

∑
sj∈S

wi,jzi,kmi,j . (15)

The FNC can achieve cost saving by turning off redundant
FNs when the computation workload is offloaded to the fog-
capable vehicles parked at the parking places. To attract
the fog-capable vehicles to the desired parking places, the
FNC needs to pay a certain amount of monetary rewards
for service offloading. The goal of the FNC is to minimize
its cost of satisfying the demands of all end-users in all
hotspots. The profit of the FNC is represented by its cost
saving from offloading workloads to parked vehicles minus
the total offload payments. Each on-the-move vehicle, on the
other hand, aims to maximize its own utility when requesting
parking reservation service. They may compete with each
other for preferred parking slots. It motivates us to employ
a parking reservation auction to regulate the proposed VFC
system.

III. SINGLE-ROUND AUCTION DESIGN

In this section, a single-round multi-item parking reservation
auction is first presented to guide the on-the-move vehicles to
the available parking places and meanwhile regulate the parked
vehicles to assist the delay-sensitive computing services. In
this scenario, the parking reservation auction is held once
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Fig. 2. Time sequence of parking reservation

every time slot and the FNC announces the corresponding
offload price once in the auction. We provide the strategies
of the smart vehicles. We also devise an allocation rule and
a payment rule to guarantee the desired economic properties,
such as incentive compatibility and individual rationality.

A. Auction Model

The FNC acts as a auctioneer, who periodically holds the
parking reservation auction at each time slot. An offload price
aj,k is announced for per CPU resource provided by parked
vehicles at sj to hotspot hk. The parking place operators are
sellers and each of them provides homogeneous goods, namely
the unoccupied parking slots. A reserve price psj (minimum
acceptable) is charged per unit time if the vehicle chooses to
park at sj . The on-the-move vehicles, which act as bidders,
request for parking reservation service.

We define parking reservation point t as the beginning of
parking reservation duration, as shown in Fig. 2. The reser-
vation auction is formulated on a rolling horizon of time slot
intervals and periodically starts with an advance reservation
period tr ahead of t. In other words, the reservation auction
is held at the decision point (t − tr) periodically to reserve
the parking slots up to tr in advance. The advance reservation
period can guarantee that those vehicles i) know their targeted
parking places before the reserved parking duration rather
than blindly search and ii) can directly park at their reserved
parking slots when arrive. If vehicle bi chooses to park at sj ,
the parking reservation duration will be

τ ri,j = τdi,j + ∆i − tr. (16)

Then, the parking duration between arrives and departs of
bi is known as [T in

i,j , T
out
i,j ], where T in

i,j = t − tr + τdi,j and
T out
i,j = T in

i,j + ∆i. Note that vehicle i can directly park at the
reserved parking slot only when its arrival time T in

i,j is after
the reservation point t. Thus, we have the constraint τdi,j ≥ tr.

The proposed reservation auction is presented as follows:

• Step 1: On-the-move vehicles send requests for parking
reservation service to the FNC.

• Step 2: The FNC collects the occupancy information Cj(t)
and reserve prices psj from parking places. And then, the
FNC announces the offload price aj,k and the reserve price
psj to the smart vehicles.

• Step 3: The vehicles submit the bidding vectors to the FNC.
• Step 4: The FNC applies predefined allocation rule and

payment rule to determine the parking allocation and the
corresponding parking payments.

B. Strategies

1) Vehicles: Let vi denote the value of successful parking
of bi. The utility of bi parking at sj is

ui,j = vi,j − τ ri,jpsj , where (17)

vi,j =


vi − ci,j +

∑
hk∈H

zi,k∆i(aj,kmi,j − cki,j)

if τdi,j ≥ tr, τwi,j ≤ Tw
i and τi,j ≤ Ti,

0 otherwise,

(18)

is the true valuation. The Tw
i and Ti are the maximum

tolerant walking time (maximum distance bi would like to
walk from the reserved parking place to the destination) and
the maximum tolerant traveling time of bi, respectively. The
vi,j is regarded as the bidding of bi to sj . Besides, the
constraint τdi,j ≥ tr must be satisfied or else the true valuation
vi,j will be zero. This comes from the fact that the bi would
expect to have its reserved parking space at sj ready when it
arrives. Otherwise, it will stuck at the gate or need to circle
around for a while, which is not preferred by bi. Therefore,
the set of the candidate parking places of bi is defined as

Si = {sj : vi,j > 0, sj ∈ S}. (19)

Those vehicles in B with non-empty set of candidate parking
places form the set of smart vehicles, denoted by Bb. Accord-
ingly, we have the candidate vehicles of sj as:

Bj = {bi : vi,j > 0, bi ∈ Bb}. (20)

Besides, we denote Hj as the candidate hotspots served by
the parked vehicles at sj , where hj,k < Dk for ∀hk ∈ Hj .
Accordingly, the candidate parking places of hotspot hk is
denoted by Sk, where hk ∈ Hj for ∀sj ∈ Sk.

The amount of CPU resources contributed by vehicle bi
to the FNC will depend on the benefit minus the cost. A
hard constraint is that the service delay cannot surpass the
maximum delay toleration Dk, that is,

dki,j ≤ Dk ⇒
λ̂kmi,j

µ− λ̂k
+ ξΦl(X s

j ,X h
k ) ≤ Dk

⇒ mi,j ≤
(µ− λ̂k)(Dk − ξΦl(X s

j ,X h
k ))

λ̂k

⇒ mi,j ≤ (
µmk

λk
− 1)(Dk − ξΦl(X s

j ,X h
k )).

(22)
That is to say, the FNC can use mk, the total number of CPUs
required at hotspot hk, to control the above constraint. To
integrate the parked vehicle assistance to conventional VFC
system, a feasible mk determined by the FNC becomes very
important. A small mk means heavy workload λ̂k allocated
to each CPU, which limits the number of CPUs contributed
by a fog-capable vehicle subject to the constraint (22). In the
proposed VFC system, we introduce a simple parameter Mh

to indirectly determine mk. That is, at most Mh CPUs per
smart vehicle offered is allocated to support a hotspot hk when
parking at one of its candidate parking places Sk. Substituting
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∆cost
k −

∑
bi∈B

∑
sj∈Si

wi,jzi,kmi,jaj,k =α
λ̂k(mk)2

µ
− αλ̂k

µ
(mk −

∑
bi∈B

∑
sj∈S

wi,jzi,kmi,j)
2

=2α
λ̂kmk

µ

∑∑
wi,jzi,kmi,j − α

λ̂k
µ

(
∑∑

wi,jzi,kmi,j)
2 −

∑∑
wi,jzi,kmi,jaj,k

≥2α
λ̂kmk

µ

∑∑
wi,jzi,kmi,j − α

λ̂kmk

µ

∑∑
wi,jzi,kmi,j −

∑∑
wi,jzi,kmi,jaj,k

=
∑∑

wi,jzi,kmi,j(α
λ̂kmk

µ
− aj,k) ≥ 0. (21)

mi,j to (22) by Mh, we have

mk ≥
λk
µ

[
Mh

(Dk − ξΦl(X s
j ,X h

k ))
+ 1]

⇒ mk = d min
sj∈Sk

{λk
µ

[
Mh

(Dk − ξΦl(X s
j ,X h

k ))
+ 1]}e. (23)

To achieve the maximum utility when parking at sj , the
bi needs to select its serving hotspot and the corresponding
optimal number of offered CPUs:

{hk∗ ,m∗i,j} = arg max
mi,j

(aj,kmi,j − cki,j), hk ∈ Hj

s.t. mi,j ∈ {1, · · · ,mi},

mi,j ≤
(µ− λ̂k)(Dk − ξΦl(X s

j ,X h
k ))

λ̂k
,∀hk ∈ Hj .

(24)
Note that it is possible for bi that any offer will give it negative
utility due to insufficient compensation from the FNC. In
such a case, the bi chooses to park at sj without providing
offload service. Let zi,k∗ = 1 and

∑
hk 6=hk∗

zi,k = 0, the bidding

valuation vi,j can be calculated by (18). Therefore, the bidding
vector of bi to sj is represented as {vi,j , hk∗ ,m∗i,j}.

2) FNC: With the service aid of parked vehicles, the cost
saving at hk will be

∆cost
k = C(mk)− C(mf

k). (25)

Therefore, the FNC’s instantaneous profit is represented as

π =
∑
hk∈H

πk =
∑
hk∈H

(∆cost
k −

∑
bi∈B

∑
sj∈Si

wi,jzi,kmi,jaj,k),

(26)
where πk is the profit of hotspot hk.

We would like to guarantee the non-negative profit for each
hotspot by (21).

Therefore, we have

aj,k ≤ α
λ̂kmk

µ
,∀hk ∈ H. (27)

On the other hand, to attract those fog-capable vehicles
that park at sj and meanwhile provide computing services
to hotspot hk, the FNC needs to guarantee that the desired
vehicles will have positive utilities here, that is,

aj,kmi,j − α
λ̂km

2
i,j

µ
− βΦl(X h

k ,X s
j ) > 0. (28)

Note that at most Mh CPUs are allowed to support a hotspot
per smart vehicle. Moreover, we would like to design the

offload price so that the parked vehicle can gain more utility
when it offers more CPUs to VFC. We first observe that the
quadratic function in the above constraint is an upside-down
parabola with respect to mi,j . Let mi,j = 1, we have

aj,k > α
λ̂k
µ

+ βΦl(X h
k ,X s

j ). (29)

We should guarantee its symmetry axis to be greater than or
equal to Mh, that is,

− aj,k

2(−α λ̂k

µ )
≥Mh ⇒ aj,k ≥

2αλ̂kM
h

µ
. (30)

Therefore, the offload price aj,k is constrained by

aj,k > max{αλ̂k
µ

+ βΦl(X h
k ,X s

j ),
2αλ̂kM

h

µ
}. (31)

In the single-round auction, the FNC can announce fixed
offload price aj,k subject to the constraints (27)(31).

C. Allocation Rule

The objective of the allocation rule is to maximize the
aggregate utility of the smart vehicles in Bb:

w∗i,j = arg max
wi,j

∑
bi∈Bb

∑
sj∈S

wi,j(vi,j − τ ri,jpsj),

s.t. wi,j ∈ {0, 1},∀bi ∈ Bb,∀sj ∈ S∑
sj∈S

wi,j ≤ 1,∀bi ∈ Bb∑
bi∈Bb

wi,j ≤ Cj(t),∀sj ∈ S

wi,j(vi,j − τ ri,jpsj) ≥ 0. (32)

Lemma 1. The allocation problem (32) can be modified as a
maximum weight b-matching problem in a weighted bipartite
graph (WBG).

Proof. In a weighted bipartite graph, the vertices can be
decomposed into two disjoint sets U and V such that every
edge with an associated weight connects a vertex in U to the
other in V . A maximum weighted b-matching problem in a
WBG is defined as a matching where the sum of the weights of
all edges in the matching has a maximal value and each vertex
in U matches at least 1 and at most b(v) vertices in V . In the
allocation problem (32), we construct a WBG G = (U, V,E)
with two disjoint sets, the set of parking places U = S and
the set of smart vehicles V = Bb. The weight A(bi, sj) of the
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edge connecting sj and bi represents the utility of bi if parks
at sj . Parking place sj matches at most Cj(t) smart vehicles
since its parking slot inventory at time t is Cj(t). And a smart
vehicle can be assigned to one parking slot. In this way, the
problem (32) is modified as a maximum weight b-matching
problem in WBG.

Lemma 2. The allocation problem (32) is a maximum weight
perfect bipartite matching (MWPBM) problem.

Proof. To fits classic 1-matching problem, we duplicate
the original WBG G = (U, V,E) to a new WBG
G′ = (U ′, V, E′), where U ′ = {U1, · · · , UM}, Uj =
{sj,1, · · · , sj,Cj(t)} and sj,n is the n-th parking slot of park-
ing place sj . An identical weight is assigned between the
parking slots in the same place and a vertex in V , that is,
A(bi, sj,n) = A(bi, sj). Furthermore, by adding some virtual
vertexes and virtual edges, we transform G′ to a complete
WBG G′′ = (U ′′, V ′, E′′) to satisfy the conditions that
|U ′′| = |V ′| = max{

∑
sj∈S Cj(t), |Bb|} and every vertex

in U ′′ is connected to every vertex in V ′. For those virtual
vertexes, the weighted of the link is changed to be zero. In
this way, we aims to find a matching of G′′ where every vertex
in (U ′′ ∪ V ′) is incident to exactly one edge. Therefore, the
allocation problem (32) become a MWPBM problem.

Lemma 3. The allocation problem (32) has a complexity of
O(N3).

Proof. We know that classic Kuhn-Munkres (KM) algorithm
(also known as Hungarian algorithm) [29, 30] can be exploited
to solve MWPBM problem, which has the complexity of
O(N3). In addition, the transformation proposed above has a
complexity of O(N2). Therefore, the allocation problem (32)
can be solved with the complexity of O(N3).

Specifically, we find out that the advance reservation period
tr can be used as a parameter to control the frequency of
the reservation auction. A small period means high auction
frequency, which indirectly restricts the number of participant
smart vehicles in each auction and therefore the complexity
can be reduced.

D. Payment Rule

The goal of the payment rule is to satisfy the desired
economic properties in a socially optimal manner subject to
the reserve price constraint. Vickrey Clarke Groves (VCG)
mechanism is widely used in auction design that gives bidders
an incentive to bid their true valuations. We modify the VCG
mechanism with Clarke pivot payments [31]. Let {wi,j} and
{ŵi,j} be the allocation results of problem (32) with and
without bi’s participation, respectively. Then, the payment for
bi to its parking place sj can formally be written as

pbi =


τ ri,jp

s
j +

∑
bl 6=bi

∑
so∈S

ŵl,o(vl,o − τ rl,opso)

−
∑
bl 6=bi

∑
so∈S

wl,o(vl,o − τ rl,opso)

if bi wins a parking reservation at sj ,
0, if bi loses the auction.

(33)

Note that the marginal harm each vehicle cause to other
bidders is non-negative according to the VCG mechanism,
therefore, the reserve price required by the parking places can
be guaranteed.

E. Economic Analysis

Theorem 1. The proposed auction is incentive compatible.

Proof. In a truthful auction, all bidders are incited to voluntar-
ily reveal their true valuation for the items they are bidding. Let
Vi be the true valuation vector of bi and V−i be the valuation
vectors of other smart vehicles Bb\{bi}. When Vi and V−i are
submitted, the utility of bi can be calculated using the payment
rule (33):

ui =
∑
sj∈S

wi,jvi,j − pbi

=
∑
sj∈S

wi,j(vi,j − τ rl,jpsj) +
∑
bl 6=bi

∑
so∈S

wl,o(vl,o − τ rl,opso)

−
∑
bl 6=bi

∑
so∈S

ŵl,o(vl,o − τ rl,opso). (34)

When V ′i and V−i are submitted, the utility of bi is

u′i =
∑
sj∈S

w′i,jvi,j − pbi

=
∑
sj∈S

w′i,j(vi,j − τ rl,jpsj) +
∑
bl 6=bi

∑
so∈S

w′l,o(vl,o − τ rl,opso)

−
∑
bl 6=bi

∑
so∈S

ŵl,o(vl,o − τ rl,opso). (35)

Since {wi,j} maximizes the total profit defined by (32), we
have∑

sj∈S
wi,j(vi,j − τ rl,jpsj) +

∑
bl 6=bi

∑
so∈S

wl,o(vl,o − τ rl,opso)

≥
∑
sj∈S

w′i,j(vi,j − τ rl,jpsj) +
∑
bl 6=bi

∑
so∈S

w′l,o(vl,o − τ rl,opso).

(36)

By subtracting the term
∑
bl 6=bi

∑
so∈S

ŵl,o(vl,o−τ rl,opso) from both

sides of the inequality, we get ui ≥ u′i, which means that the
incentive compatible property is held.

Theorem 2. The proposed auction is individually rational.

Proof. The utility of the sellers and buyers should be no less
than zero. Each agent participating in the auction can expect
a non-negative utility. According to the payment rule (33), we
observe that the per unit payment from each parked vehicle
is greater than the reserved price announced by sellers since
pbi/τ

r
i,j ≥ psj if bi wins a parking reservation at sj . That is,

the sellers can achieve non-zero utility. Besides, we consider
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the utility of bi in (34) and have

ui =
∑
sj∈S

wi,j(vi,j − τ rl,jpsj) +
∑
bl 6=bi

∑
so∈S

wl,o(vl,o − τ rl,opso)

−
∑
bl 6=bi

∑
so∈S

ŵl,o(vl,o − τ rl,opso)

≥
∑
bl∈Bb

∑
so∈S

wl,o(vl,o − τ rl,opso)

−
∑
bl∈Bb

∑
so∈S

ŵl,o(vl,o − τ rl,opso) ≥ 0, (37)

which shows individual rationality of buyers.

Theorem 3. The proposed auction has budget balance.

Proof. We know that the FNC can achieve a non-negative
profit of each hotspot when announces the offload price subject
to the constraint (27). Besides, the parking places can charge at
least reserve price from the parked vehicles when the proposed
payment rule (33) is employed. Therefore, budget balance is
held in the proposed auction.

IV. MULTI-ROUND AUCTION WITH DYNAMIC OFFLOAD
PRICING

We have proposed a single-round parking reservation auc-
tion, where fixed offload price is announced subject to the
constraints (27)(31) by the FNC. Although we have derived
the feasible region of the offload price, the optimal choice of
the offload price is still unknown. In general, it is challenging
to get a closed form of the optimal offload price given the
proposed auction structure. Nevertheless, the offload price can
be improved through iterative update process in a multi-round
setting. Apparently, some hotspots can transfer their CPU
resources provided by parked vehicles to other hotspots with
a more appropriate offload price so that the total profit of
the FNC is increased. In this section, we provide a multi-
round multi-item parking reservation auction with offload
pricing update to increase the profit of the FNC. The overall
description of the proposed multi-round auction is shown
in Fig. 3. An observation stage is employed at the end of
each round of the reservation allocation. Besides, we propose
intra-parking place pricing and inter-parking place pricing for
the profit improvement of the FNC. The multi-round auction
is considered as a replacement of the single-round auction.
That is to say, the whole auction procedure in Fig. 3 will
be completed at a single decision point, where the final
parking allocation and the corresponding parking payments
are determined. The winners have their reserved parking slots
by playing this one-shot multi-round auction.

A. Observation Stage

To address the offload pricing to regulate both the biddings
of the smart vehicles and the allocation results, the FNC
needs to know the private information of those smart vehicles,
such as the value of successful parking vi, the actual parking
duration ∆i, total cost of both driving and walking ci,j .
According to (17)(18), we have

vi,j = vi − ci,j + ∆izi,k(aj,kmi,j − cki,j). (38)
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Fig. 3. Flow chart of the proposed multi-round auction with offload pricing

In each round of the reservation auction, the values of vi,j and
(aj,kmi,j − cki,j) are known to the FNC from their bidding
vectors. We know that a solution to a system of two-variable
linear equations can be derived from a two equation set.
Therefore, the FNC can calculate the values of (vi − ci,j)
and ∆i with two different aj,k:

vi − ci,j =
v′i,jzi,k(aj,kmi,j−cki,j)−vi,jvi,j

zi,k(aj,kmi,j−cki,j)−z′i,k′ (a
′
j,k′m

′
i,j−ck

′
i,j)
,

∆i =
vi,j−v′i,j

zi,k(aj,kmi,j−cki,j)−z′i,k′ (a
′
j,k′m

′
i,j−ck

′
i,j)
.

(39)

That is to say, the private information of vehicles can be
observed by the FNC by applying offload pricing update after
two rounds of the auction.

However, (vi − ci,j) can only be observed when aj,k is
updated and hk is selected by bi at sj . To further increase the
observation efficiency, we apply an indirect observation. Let
Ai,j = zi,k(aj,kmi,j − cki,j) and Ai,j′ = zi,k′(aj′,k′mi,j′ −
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Algorithm 1 Intra-parking Place Pricing (IntraPricing)
Require: {aj,k}, {πk}.
Initialization: Set ∆π ← 0.

1: Sort hk ∈ H by πk in ascending order.
2: for each hotspot hk do
3: for each candidate parking place sj ∈ Sk do
4: for each candidate hotspot hk′ ∈ Hj\{hk} do
5: Set M to be the unique set of {mi,j}, ∀wi,jzi,k′ = 1.
6: Set m← min(M).
7: Calculate new offload price a′j,k according to (44).
8: Calculate new profits π′k and π′k′ according to (45)(46).
9: Set ∆π′ ← [(π′k + π′k′)− (πk + πk′)].

10: if ∆π < ∆π′ then
11: Set ∆π ← ∆π′, sj∗ ← sj , a∗ ← a′j,k.
12: end if
13: end for
14: end for
15: if ∆π 6= 0 then
16: Set {a′j,k} ← {aj,k}.
17: Set a′j∗,k ← a∗.
18: exit and output {a′j,k}
19: end if
20: end for
21: output {a′j,k}

ck
′

i,j′). We have

vi,j − vi,j′
=(vi − ci,j + ∆iAi,j)− (vi − ci,j′ + ∆iAi,j′)

=∆i(Ai,j −Ai,j′) + ci,j′ − ci,j . (40)

Similarly, (ci,j′ − ci,j) and ∆i can be observed when either
aj,k or aj′,k′ is updated and either hk is selected by bi at sj
or hk′ is selected by bi at sj′ :

ci,j′ − ci,j =
(v′i,j−v

′
i,j′ )(Ai,j−Ai,j′ )−(vi,j−vi,j′ )(A

′
i,j−A

′
i,j′ )

(Ai,j−Ai,j′ )−(A′i,j−A′i,j′ )
,

∆i =
(vi,j−vi,j′ )−(v

′
i,j−v

′
i,j′ )

(Ai,j−Ai,j′ )−(A′i,j−A′i,j′ )
.

(41)
In addition, we know that the number of CPUs equipped in

the smart vehicles can be measured by the offered CPUs in
the bidding vectors iteratively. The FNC records the maximum
number of CPUs provided by the smart vehicle bi by:

m̃i = max{m̃i, max
sj∈Si

mi,j}, (42)

where m̃i is initialized by 0.

B. Intra-parking Place Pricing
Consider the allocation results of each single-round reser-

vation auction, some CPUs of the smart vehicles parking at
sj have been offered to hotspot hk′ . The FNC will expect to
attract those offered CPUs from hk′ to hk at the same parking
place sj by increasing the offload price aj,k if the total profit
is thereby increased. In the same parking place sj , bi will
change its choice by selecting hk instead of hk if

aj,kmi,j − cki,j > aj,k′mi,j − ck
′

i,j

⇒ aj,k >
cki,j − ck

′

i,j

mi,j
+ aj,k′ . (43)

Therefore, we update the offload price by:

a′j,k = min
bi∈Bb

{
cki,j − ck

′

i,j

mi,j
}+ aj,k′ . (44)

Algorithm 2 Inter-parking Place Pricing (InterPricing)
Require: {Cj(t)}, {πk}, {wi,j}, {zi,k}.
Initialization: Set π ←

∑
πk, π̃ ← π.

1: Sort hk ∈ H by πk in ascending order.
2: for each hotspot hk do
3: Update Cj(t) according to current allocation result.
4: for each candidate parking place sj ∈ Sk do
5: Set B′j ← Bj\{bi : wi,j = 1 ∨ m̃i = 0, ∀bi ∈ Bj}.
6: if Cj(t) > 0 and all ∆i and (ci,j′ − ci,j) have been

observed for ∀bi ∈ B′j , wi,j′ = 1 then
7: Set {a(i)} ← Inf .
8: for each vehicle bi ∈ B′j do
9: Calculate new offload price a′j,k according to (49)(50).

10: Set a(i)← a′j,k.
11: end for
12: Sort B′j by a(i) in ascending order.
13: Set {w′i,j} ← {wi,j}, {z′i,k} ← {zi,k}
14: for each vehicle bi ∈ B′j do
15: if Cj(t) > 0 and a(i) 6= Inf then
16: Set a′j,k ← a(i).
17: Let sj′ for w′i,j′ = 1, hk′ for zi,k′ = 1.
18: Set w′i,j′ ← 0, w′i,j ← 1, z′i,k′ ← 0, z′i,k ← 1.
19: Set {Cj(t)} ← {Cj(t)} − 1.
20: Set B

′′
j ← {bi : w′i,j = 1 ∧ z′i,k = 0

∧m̃i 6= 0, ∀bi ∈ Bj}.
21: for each vehicle bi′′ ∈ B′′j do
22: Let hk′′ for zi′′,k′′ = 1.
23: if a′j,kmi′′,j − cki′′,j > a′j,k′′mi′′,j − ck

′′

i′′,j then
24: Set z′i′′,k′′ ← 0 and z′i′′,k ← 1.
25: end if
26: end for
27: Calculate new profits π′ according to (26) that

subject to {w′i,j} and {z′i,k}.
28: if π̃ < π′ then
29: Set π̃ ← π′, sj∗ ← sj , a∗ ← a′j,k.
30: end if
31: end if
32: end for
33: end if
34: end for
35: if π̃ 6= π then
36: Set {a′j,k} ← {aj,k}, a′j∗,k ← a∗.
37: exit and output {a′j,k}
38: end if
39: end for
40: output

In this way, the profits of hk and hk′ become

π′k =C(mk)− C(mf
k −

∑
bi∈Bb

wi,jzi,k′mi,j)

−
∑
bi∈Bb

∑
sj′∈Si\{sj}

wi,j′zi,kmi,j′aj′,k

−
∑
bi∈Bb

wi,j(zi,k + zi,k′)mi,ja
′
j,k, (45)

π′k′ =C(mk′)− C(mf
k′ +

∑
bi∈Bb

wi,jzi,k′mi,j)

−
∑
bi∈Bb

∑
sj′∈Si\{sj}

wi,j′zi,k′mi,j′aj′,k′ , (46)

respectively.

We try to find a parking place sj∗ and a hotspot hk∗ so
that the FNC can achieve maximum profit by applying new
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Fig. 4. Selected region of Da’an district, Taipei city

offload price aj∗,k∗ according to (44), that is,

{sj∗hk∗} = max
sj ,hk

[(π′k + π′k′)− (πk + πk′)],

s.t. (π′k + π′k′)− (πk + πk′) > 0. (47)

The overall description of the intra-parking place pricing is
shown in Algorithm 1. Note that the hotspot with less profit
has higher priority to update its offload price to its candidate
parking places.

C. Inter-parking Place Pricing

Moreover, the offered CPUs can also be transferred between
different parking places if the offload price is further increased.
We propose an inter-parking place pricing when the intra-
parking place pricing could not reach any profit improvement.

For parking place sj , we exclude those smart vehicles from
Bj , which have been allocated to sj or have zero number of
CPUs observed by the FNC, that is,

B′j ← Bj\{bi : wi,j = 1 ∨ m̃i = 0,∀bi ∈ Bj}. (48)

We consider those candidate parking places of hk, sj ∈ Hj ,
which have non-empty parking slot inventory Cj(t) updated
by the current allocation result, and have full observation of
∆i and (ci,j′ − ci,j) for ∀bi ∈ B′j , wi,j′ = 1.

To attract the fog-capable vehicle bi from sj′ to sj and
meanwhile transfer its serving hotspot from hk′ to hk when
sj still has parking slot inventory, we need to guarantee that
ui,j ≥ ui,j′ . Derived from (17)(18), we have

aj,k ≥
τ ri,jp

s
j − τ ri,j′psj′ + ci,j − ci,j′

∆imi,j
+
cki,j − ck

′

i,j′

mi,j
+ aj′,k′ .

(49)

If hk′ doesn’t exist, then it reduces to

aj,k ≥
τ ri,jp

s
j − τ ri,j′psj′ + ci,j − ci,j′

∆imi,j
+

cki,j
mi,j

. (50)

Moreover, we find that those smart vehicles, which have been
allocated to sj and have none-zero number of CPUs observed
by the FNC, may change their serving hotspots to hk due to
the update of aj,k. Therefore, we need to consider the new
choices of those smart vehicles, denoted by

B
′′

j ← {bi : wi,j = 1 ∧ zi,k = 0 ∧ m̃i 6= 0,∀bi ∈ Bj}, (51)

according to (24). The overall description of the inter-parking
place pricing is shown in Algorithm 2.

So far, we have fully introduced the proposed multi-round
auction with offload pricing as shown in Fig. 3. Note that
non-negative profit of each hotspot can be achieved in the
single-round auction by applying the offload price according
to the constraints (27) (31), as discussed in Section III-E. In
the multi-round auction, the FNC announces new offload price
each time, which can improve its total profit. Therefore, budget
balance is also held in the proposed dynamic auction.

V. SIMULATION RESULTS

In this section, simulation results are provided to verify the
performance of the proposed VFC. As shown in Fig. 4(a),
we select a partial region of Da’an district, Taipei city, as
the map for simulations. The street layout of the selected
region is obtained from the OpenStreetMap (OSM) database.
The parking census in the selected region is available from
”Data. Taipei” platform [32]. Fig. 4(b) shows the locations
of parking places and hotspots. In the selected region, each
dot scattered on the street layout represents the location of
a parking place and the color bar on the right displays the
capacity of those parking places. Specifically, we select 6
hotspots according to the crowd density of the selected region,
as marked by red pentastars in Fig.4(b). The ratio of parking
slot inventory available and reserved for smart vehicles in
each parking place follows the standard uniform distribution.
Unconnected vehicles are not allowed to use these reserved
spaces and therefore will not impact the auctions. The current
car position and the traveling destination are also initialized by
following the 2D uniform distribution in the whole map. The
key simulation parameters are listed in Table II. Specifically,
we assume that the parking valuation vi is proportional to the
parking duration ∆i, namely vi = 10∆i in our simulations.
We compare four approaches: 1) Conventional, without the
aid of parked vehicles; 2) Greedy, in which the vehicles
are allocated according to greedy allocation instead of the
proposed allocation rule; 3) Single, the proposed single-round
auction; 4) and Multiple, the proposed multi-round auction.
The greedy allocation rule is defined that the available parking
slots are allocated to the smart vehicles with larger bidding
value vi,j , and the allocation order following the parking value.
The offload price of both Single and Multiple is initialized to
be the minimum of the constraints (27)(31).

We first present the performance versus the offload price in
Fig. 5, where the FNC announces the same and fixed offload
price between parking places and hotspots. In Fig. 5(a), we
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Fig. 5. Performance versus the offload price: N = 100.
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TABLE II
LIST OF KEY SIMULATION PARAMETERS

αf , α, β, ξ 0.8, 0.6, 0.4, 0.001

δ, θ 10, $0.5/km
psj unif($2, $3)

µ, λk 1MB/s, unif(5MB/s, 20MB/s)
mi, Mh unif(0, 5), 5

Dk unif(10ms, 50ms)
rw, rdi 3.5km/h, unif(10km/h, 30km/h)
tr, ∆i 0.01h, unif(0.5h, 5h)
Tw
i , Ti 0.2h = 12min, 0.15h = 9min

observe that the average utility of vehicles increases against the
offload price because the compensation from the FNC becomes
larger. Specifically, the fluctuation at lower offload price is
because the maximum offered CPUs allowed to support a
hotspot per smart vehicle increase accordingly as the offload
price grows and therefore the smart vehicles reselect their serv-
ing hotspots and the number of offered CPUs. Nevertheless,
their average utility increased steadily at higher offload price
because of limit number of equipped CPUs. We also find out
that higher offload price can attract more parked vehicles to

provide their CPUs in Fig. 5(b). Single outperforms Greedy by
attracting more CPUs for service offloading and cost saving.
Nevertheless, the profit of the FNC is not always increasing
due to the unnecessary offload payments, as shown in Fig.
5(c). The overpriced offload payment makes no increment
to the number of offered CPUs and decreases the profit of
the FNC. This suggests an optimal choice of offload price
exists and therefore we propose Mulitiple to improve the
profit of the FNC with offload price update. In general, the
benefit of Single is relatively insignificant due to the same
and fixed offload price, which is used to compensate for the
fog service cost of parked vehicles. Therefore, different offload
price should be announced to attract those smart vehicles to
park at proper parking spaces. Nevertheless, the analysis on
single-round mechanism serves as the foundation for us to
understand the effect of offload price on the allocation in the
proposed auction.

In Fig. 6, we show the performance versus the number of
smart vehicles. The successful reservation ratio of vehicles in
Fig. 6(a) is calculated by the number of those vehicles, which
have been successfully allocated to the unoccupied parking
slots, over the number of smart vehicles. We observe that the
allocation ratio decreases against the number of vehicles due
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Fig. 7. Performance versus the inventory ratio of parking places: N = 100.
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Fig. 8. Profit of the FNC versus workload arrival rate.

to the limited parking slots. Greedy causes a great loss of
successful parking reservation when the number of vehicles
is more than 100. However, both Single and Multiple can
satisfy almost all of the smart vehicles. The decline in Fig.
6(b) indicates the intensified competition of the smart vehicles
for preferred parking slots. Nevertheless, Single achieves better
average utility of vehicles comparing with Conventional and
Greedy. Multiple further improves the average utility of vehi-
cles from Single due to the increase of the offload price in the
proposed multi-round setting. In Fig. 6(c), we observe that the
proposed smart VFC framework outperforms Conventional in
terms of FNC’s profit since Conventional doesn’t deliver any
cost saving for the FNC. The multi-round auction achieves
significant profit improvement of the FNC from Single by
applying the proposed intra-parking place pricing and the
inter-parking place pricing. Comparing with Conventional as
shown in Fig. 6(b) and Fig. 6(d), we observe that the proposed
smart VFC framework guarantees the benefits of vehicles
subject to the reserve price constraint and meanwhile provide
additional income to the parking places. In Fig. 6(d), the
maximum average parking income per vehicle is achieved by
Greedy, which means that the utility of the parked vehicles will
be degraded accordingly as we observed in Fig. 6(b). Besides,
we find out that the average utility of vehicles, the profit of the
FNC and the average parking income per vehicle in Multiple
is better than both Conventional and Single. That is to say, the
proposed system with multi-round auction provides a win-win
solution to all auction players. Fig. 6(e) shows the number of
round of Multiple. We further increase the number of smart
vehicles from 110 to 230 and observe that the complexity is
bounded in 40. That is to say, the complexity of Multiple will
not always increase with the number of smart vehicles due to
the limited parking slots in the real world.
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Fig. 9. Profit of the FNC versus the number of smart vehicles.

The shortage of available parking spaces will intensify the
competition among the smart vehicles bidding for preferred
parking slots. To illustrate this phenomenon, the performance
versus the inventory ratio of parking places is shown in
Fig. 7. In Fig. 7(a), the successful reservation ratio of the
smart vehicles generally increases with more available parking
spaces as we expect. Due to the heuristic of myopic choice at
each stage, Greedy could not make full use of limited parking
resources comparing with the proposed allocation rule. We
define the extra parking income of a parking place as the
sum of the parking payment minus the reserve price of each
smart vehicle parking there. In Fig. 7(b), the extra parking
income per place firstly increases and then decreases versus the
inventory ratio. Under the shortage of available parking spaces,
higher inventory ratio allows more successful reservations of
the smart vehicles and therefore the parking places will get
more extra parking income. However, the extra parking income
decreases when parking places are sufficient. We know that
the proposed payment rule charges each parked vehicle the
marginal harm they cause to other bidders so that the incentive
compatibility can be guaranteed. Therefore, less competition
under sufficient parking places also leads to less extra parking
income. We observe that both Single and Multiple outperforms
Greedy in terms of extra parking income under the shortage
of parking spaces. In Fig. 7(c), the profit of the FNC increases
due to more assisted CPUs from more successful parked
vehicles. That is to say, the profit of the FNC is constrained
by the limited parking spaces.

To further evaluate the upper bound of the profit of the
FNC, we illustrate the profit of the FNC versus the same and
fixed workload arrival rate of the hotspots in Fig. 8, where N
is the number of smart vehicles. We observe that increasing
number of smart vehicles could not increase the profit of the
FNC when the workload arrival rate is small. That is because



13

the profit of the FNC, which is represented by its cost saving
from offloading workloads to parked vehicles minus the total
offload payments, is bounded due to the finite CPU demands of
hotspots. Moreover, by adopting the dynamic offload pricing in
the proposed multi-round auction, the FNC could not increase
its profit any more when the increased offload payment could
not be covered by the improved cost saving. We also show
that the profit of the FNC is bounded versus the number of
smart vehicles in Fig. 9.

VI. CONCLUSION

In this paper, a smart VFC system combining both PVA
and smart parking is proposed to guide the on-the-move
vehicles to the available parking places to provide PVA service
while satisfying their parking demands. We formulate the
fog-aware smart parking problem as a maximum weight b-
matching problem and the optimal allocation can be de-
rived in polynomial time. Given this result, we theoretically
prove that the proposed auction design guarantees incentive
compatibility, individual rationality, and budget balance. The
simulation results confirm the performance improvement from
the proposed design comparing with conventional and greedy
approaches, especially when the parking demand is huge. We
also find out that the proposed system with multi-round auction
provides a win-win solution to the FNC, the smart vehicles,
and the parking places.
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